Internal
problem
ID
[12197]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
7
Date
solved
:
Wednesday, March 05, 2025 at 05:33:54 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = f(x)*y(x)^2+n*y(x)+a*x^(2*n)*f(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==f[x]*y[x]^2+n*y[x]+a*x^(2*n)*f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") f = Function("f") ode = Eq(-a*x**(2*n)*f(x) - n*y(x) + x*Derivative(y(x), x) - f(x)*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**(2*n)*f(x) + n*y(x) + f(x)*y(x)**2)/x cannot be solved by the factorable group method