Internal
problem
ID
[12207]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
17
Date
solved
:
Wednesday, March 05, 2025 at 05:40:14 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = exp(lambda*x)*f(x)*y(x)^2+(a*f(x)-lambda)*y(x)+b*exp(-lambda*x)*f(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==Exp[\[Lambda]*x]*f[x]*y[x]^2+(a*f[x]-\[Lambda])*y[x]+b*Exp[-\[Lambda]*x]*f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") cg = symbols("cg") y = Function("y") f = Function("f") ode = Eq(-b*f(x)*exp(-cg*x) - (a*f(x) - cg)*y(x) - f(x)*y(x)**2*exp(cg*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(b*f(x) + (a*f(x) - cg + f(x)*y(x)*exp(cg*x))*y(x)*exp(cg*x))*exp(-cg*x) + Derivative(y(x), x) cannot be solved by the factorable group method