Internal
problem
ID
[12210]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
20
Date
solved
:
Wednesday, March 05, 2025 at 05:40:53 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = f(x)*y(x)^2+2*a*lambda*x*exp(lambda*x^2)-a^2*f(x)*exp(2*lambda*x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==f[x]*y[x]^2+2*a*\[Lambda]*x*Exp[\[Lambda]*x^2]-a^2*f[x]*Exp[2*\[Lambda]*x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") cg = symbols("cg") y = Function("y") f = Function("f") ode = Eq(a**2*f(x)*exp(2*cg*x**2) - 2*a*cg*x*exp(cg*x**2) - f(x)*y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2*f(x)*exp(2*cg*x**2) - 2*a*cg*x*exp(cg*x**2) - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method