Internal
problem
ID
[12239]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.9.
Some
Transformations
Problem
number
:
7
Date
solved
:
Wednesday, March 05, 2025 at 06:13:19 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+exp(2*lambda*x)*f(exp(lambda*x))-1/4*lambda^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+Exp[2*\[Lambda]*x]*f[Exp[\[Lambda]*x]]-1/4*\[Lambda]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") cg = symbols("cg") y = Function("y") f = Function("f") ode = Eq(cg**2/4 - f(exp(cg*x))*exp(2*cg*x) - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE cg**2/4 - f(exp(cg*x))*exp(2*cg*x) - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method