61.22.8 problem 8

Internal problem ID [12254]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 8
Date solved : Friday, March 14, 2025 at 04:39:32 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} y y^{\prime }-y&=A +B \,{\mathrm e}^{-\frac {2 x}{A}} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 76
ode:=y(x)*diff(y(x),x)-y(x) = A+B*exp(-2*x/A); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} -2 A \arctan \left (\frac {y+A}{y \sqrt {\frac {-A B \,{\mathrm e}^{-\frac {2 x}{A}}-\left (y+A \right )^{2}}{y^{2}}}}\right )-2 \sqrt {\frac {-A B \,{\mathrm e}^{-\frac {2 x}{A}}-\left (y+A \right )^{2}}{y^{2}}}\, y = 0 \]
Mathematica
ode=y[x]*D[y[x],x]-y[x]==A+B*Exp[-2*x/A]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
B = symbols("B") 
y = Function("y") 
ode = Eq(-A - B*exp(-2*x/A) + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -A/y(x) - B*exp(-2*x/A)/y(x) + Derivative(y(x), x) - 1 cannot be solved by the factorable group method