7.10.27 problem 27

Internal problem ID [297]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 27
Date solved : Tuesday, March 04, 2025 at 11:07:29 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{3 x}+x c_3 +c_2 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 26
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (c_2 x+c_3 e^{3 x}+c_1\right ) \]
Sympy. Time used: 0.092 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} + C_{2} x\right ) e^{- 2 x} \]