61.22.35 problem 35

Internal problem ID [12281]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.1-2. Solvable equations and their solutions
Problem number : 35
Date solved : Friday, March 14, 2025 at 04:41:47 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y y^{\prime }-y&=A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 474
ode:=y(x)*diff(y(x),x)-y(x) = A*(n+2)*(x^(1/2)+2*(n+2)*A+(2*n+3)*A^2/x^(1/2)); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (n +2\right ) A \left (\operatorname {BesselI}\left (1+\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right ) c_{1} +\operatorname {BesselK}\left (1+\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right )\right ) \sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}-\left (A \sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}\, \left (n +2\right )-\sqrt {x}+\left (-n -2\right ) A \right ) \left (c_{1} \operatorname {BesselI}\left (\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right )-\operatorname {BesselK}\left (\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right )\right )}{A \sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\, \left (n +2\right ) \operatorname {BesselI}\left (1+\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right )-\operatorname {BesselI}\left (\sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}, -\sqrt {\frac {2 \left (n +2\right ) A \sqrt {x}+\left (2 n +3\right ) A^{2}+x -y}{\left (n +2\right )^{2} A^{2}}}\right ) \left (A \sqrt {\frac {\left (n +1\right )^{2}}{\left (n +2\right )^{2}}}\, \left (n +2\right )-\sqrt {x}+\left (-n -2\right ) A \right )} = 0 \]
Mathematica
ode=y[x]*D[y[x],x]-y[x]==A*(n+2)*(x^(1/2)+2*(n+2)*A+(2*n+3)*A^2*x^(-1/2)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-A*(n + 2)*(A**2*(2*n + 3)/sqrt(x) + A*(2*n + 4) + sqrt(x)) + y(x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out