61.31.14 problem 195

Internal problem ID [12695]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Problem number : 195
Date solved : Tuesday, January 28, 2025 at 08:11:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y&=0 \end{align*}

Solution by Maple

Time used: 2.088 (sec). Leaf size: 1505

dsolve((a*x^3+b*x^2+c*x)*diff(y(x),x$2)+(alpha*x^2+beta*x+2*c)*diff(y(x),x)+(beta-2*b)*y(x)=0,y(x), singsol=all)
 
\[ \text {Expression too large to display} \]

Solution by Mathematica

Time used: 2.464 (sec). Leaf size: 149

DSolve[(a*x^3+b*x^2+c*x)*D[y[x],{x,2}]+(\[Alpha]*x^2+\[Beta]*x+2*c)*D[y[x],x]+(\[Beta]-2*b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {(2 a x+2 b-\beta -\alpha x) \left (c_2 \int _1^x\exp \left (\int _1^{K[2]}\frac {4 b^2-2 (2 \beta +(\alpha -2 a) K[1]) b+\beta ^2+\alpha ^2 K[1]^2+2 c \alpha +2 \alpha \beta K[1]-2 a (2 c+K[1] (2 \beta +\alpha K[1]))}{(2 b-\beta +2 a K[1]-\alpha K[1]) (c+K[1] (b+a K[1]))}dK[1]\right )dK[2]+c_1\right )}{x (2 b-\beta )} \]