61.31.19 problem 200

Internal problem ID [12700]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Problem number : 200
Date solved : Tuesday, January 28, 2025 at 03:48:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y&=0 \end{align*}

Solution by Maple

dsolve((a*x^3+b*x^2+c*x)*diff(y(x),x$2)+(n*x^2+m*x+k)*diff(y(x),x)+(-2*(a+n)*x+1)*y(x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 77.236 (sec). Leaf size: 552

DSolve[(a*x^3+b*x^2+c*x)*D[y[x],{x,2}]+(n*x^2+m*x+k)*D[y[x],x]+(-2*(a+n)*x+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to -\frac {2^{-\frac {k}{c}} \left (-\frac {a x}{\sqrt {b^2-4 a c}+b}\right )^{1-\frac {k}{c}} \left (a c_1 x \left (-2^{\frac {k}{c}}\right ) \left (-\frac {a x}{\sqrt {b^2-4 a c}+b}\right )^{\frac {k}{c}-1} \text {HeunG}\left [\frac {b-\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}+b},\frac {2}{\sqrt {b^2-4 a c}+b},\frac {1}{2} \left (-\sqrt {\frac {(3 a+n)^2}{a^2}}+\frac {n}{a}-1\right ),\frac {1}{2} \left (\sqrt {\frac {(3 a+n)^2}{a^2}}+\frac {n}{a}-1\right ),\frac {k}{c},\frac {2 a^2 k-a \left (m \sqrt {b^2-4 a c}+b m+2 c n\right )+b n \left (\sqrt {b^2-4 a c}+b\right )}{a \left (b \sqrt {b^2-4 a c}-4 a c+b^2\right )},-\frac {2 a x}{\sqrt {b^2-4 a c}+b}\right ]-2 a c_2 x \text {HeunG}\left [\frac {b-\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}+b},\frac {2 \left (-c k (b+m)+b k^2+c^2 (m+1)\right )}{c^2 \left (\sqrt {b^2-4 a c}+b\right )},\frac {1}{2} \left (-\sqrt {\frac {(3 a+n)^2}{a^2}}+\frac {n}{a}-\frac {2 k}{c}+1\right ),\frac {1}{2} \left (\sqrt {\frac {(3 a+n)^2}{a^2}}+\frac {n}{a}-\frac {2 k}{c}+1\right ),2-\frac {k}{c},\frac {2 a^2 k-a \left (m \sqrt {b^2-4 a c}+b m+2 c n\right )+b n \left (\sqrt {b^2-4 a c}+b\right )}{a \left (b \sqrt {b^2-4 a c}-4 a c+b^2\right )},-\frac {2 a x}{\sqrt {b^2-4 a c}+b}\right ]\right )}{a x} \]