61.32.22 problem 231

Internal problem ID [12732]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 231
Date solved : Tuesday, January 28, 2025 at 04:17:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y&=0 \end{align*}

Solution by Maple

dsolve((x^2+a)^2*diff(y(x),x$2)+b*x^n*(x^2+a)*diff(y(x),x)-m*(b*x^(n+1)+(m-1)*x^2+a)*y(x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[(x^2+a)^2*D[y[x],{x,2}]+b*x^n*(x^2+a)*D[y[x],x]-m*(b*x^(n+1)+(m-1)*x^2+a)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved