Internal
problem
ID
[689]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.4.
Separable
equations.
Page
43
Problem
number
:
14
Date
solved
:
Monday, January 27, 2025 at 02:58:06 AM
CAS
classification
:
[_separable]
Time used: 0.002 (sec). Leaf size: 21
Time used: 4.078 (sec). Leaf size: 796
\begin{align*}
y(x)\to \frac {-16 x^{3/2}+\left (96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1\right ){}^{2/3}+3 \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}-24 x+9-24 c_1}{4 \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}} \\
y(x)\to \frac {1}{16} \left (\frac {2 \left (1+i \sqrt {3}\right ) \left (16 x^{3/2}+24 x-9+24 c_1\right )}{\sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}}+2 i \left (\sqrt {3}+i\right ) \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}+12\right ) \\
y(x)\to \frac {1}{16} \left (\frac {2 \left (1-i \sqrt {3}\right ) \left (16 x^{3/2}+24 x-9+24 c_1\right )}{\sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}}-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{96 x^{5/2}+24 (-3+4 c_1) x^{3/2}+8 \sqrt {\left (2 x^{3/2}+3 x-1+3 c_1\right ) \left (2 x^{3/2}+3 x+3 c_1\right ){}^3}+32 x^3+72 x^2+36 (-3+4 c_1) x+27+72 c_1{}^2-108 c_1}+12\right ) \\
\end{align*}