7.10.40 problem 46

Internal problem ID [310]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 46
Date solved : Tuesday, March 04, 2025 at 11:07:37 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-i y^{\prime }+6 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-I*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-2 i x}+c_2 \,{\mathrm e}^{3 i x} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-I*D[y[x],x]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 i x} \left (c_1 e^{5 i x}+c_2\right ) \]
Sympy. Time used: 0.248 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(complex(0, -1)*Derivative(y(x), x) + 6*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (\sqrt {\operatorname {complex}^{2}{\left (0,-1 \right )} - 24} - \operatorname {complex}{\left (0,-1 \right )}\right )}{2}} + C_{2} e^{- \frac {x \left (\sqrt {\operatorname {complex}^{2}{\left (0,-1 \right )} - 24} + \operatorname {complex}{\left (0,-1 \right )}\right )}{2}} \]