Internal
problem
ID
[12793]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
29
Date
solved
:
Tuesday, January 28, 2025 at 04:20:10 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
✗ Solution by Maple
dsolve(diff(y(x),x$2)+(2*a*exp(lambda*x)+b-lambda)*diff(y(x),x)+( a^2*exp(2*lambda*x) + a*b*exp(lambda*x) + c*exp(2*mu*x) + d*exp(mu*x)+k )*y(x)=0,y(x), singsol=all)
✓ Solution by Mathematica
Time used: 1.299 (sec). Leaf size: 332
DSolve[D[y[x],{x,2}]+(2*a*Exp[\[Lambda]*x]+b-\[Lambda])*D[y[x],x]+( a^2*Exp[2*\[Lambda]*x] + a*b*Exp[\[Lambda]*x] + c*Exp[2*\[Mu]*x] + d*Exp[\[Mu]*x]+k )*y[x]==0,y[x],x,IncludeSingularSolutions -> True]