61.27.15 problem 25

Internal problem ID [12446]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 25
Date solved : Wednesday, March 05, 2025 at 07:05:16 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\operatorname {erf}\left (\frac {\left (a x +b \right ) \sqrt {2}}{2 \sqrt {-a}}\right ) c_{1} +c_{2} \right ) {\mathrm e}^{-\frac {x \left (a x +2 b \right )}{2}} \]
Mathematica. Time used: 60.037 (sec). Leaf size: 49
ode=D[y[x],{x,2}]+(a*x+b)*D[y[x],x]+a*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {1}{2} x (a x+2 b)} \left (\int _1^xe^{\frac {1}{2} a K[1]^2+b K[1]} c_1dK[1]+c_2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*y(x) + (a*x + b)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False