62.9.3 problem Ex 3

Internal problem ID [12834]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number : Ex 3
Date solved : Tuesday, January 28, 2025 at 04:26:04 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.055 (sec). Leaf size: 24

dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_{1} \right )\right ) x \]

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 36

DSolve[(x+y[x])-(x-y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]-1}{K[1]^2+1}dK[1]=-\log (x)+c_1,y(x)\right ] \]