7.10.45 problem 52

Internal problem ID [315]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 52
Date solved : Tuesday, March 04, 2025 at 11:07:44 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+9 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (3 \ln \left (x \right )\right )+c_2 \cos \left (3 \ln \left (x \right )\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (3 \log (x))+c_2 \sin (3 \log (x)) \]
Sympy. Time used: 0.169 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 9*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 \log {\left (x \right )} \right )} + C_{2} \cos {\left (3 \log {\left (x \right )} \right )} \]