61.27.38 problem 48

Internal problem ID [12469]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 48
Date solved : Wednesday, March 05, 2025 at 07:07:12 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \end{align*}

Maple
ode:=diff(diff(y(x),x),x)+a*x^n*diff(y(x),x)-b*(a*x^(n+m)+b*x^(2*m)+m*x^(m-1))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+a*x^n*D[y[x],x]-b*(a*x^(n+m)+b*x^(2*m)+m*x^(m-1))*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*x**n*Derivative(y(x), x) - b*(a*x**(m + n) + b*x**(2*m) + m*x**(m - 1))*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded