7.10.47 problem 54

Internal problem ID [317]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.3 (Homogeneous equations with constant coefficients). Problems at page 134
Problem number : 54
Date solved : Tuesday, March 04, 2025 at 11:08:01 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x^3*diff(diff(diff(y(x),x),x),x)+6*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \ln \left (x \right )+\frac {c_3}{x^{3}} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 22
ode=x^3*D[y[x],{x,3}]+6*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {c_1}{3 x^3}+c_2 \log (x)+c_3 \]
Sympy. Time used: 0.168 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 6*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x^{3}} + C_{3} \log {\left (x \right )} \]