62.12.24 problem Ex 25

Internal problem ID [12870]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number : Ex 25
Date solved : Tuesday, January 28, 2025 at 04:29:43 AM
CAS classification : [_rational]

\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 357

dsolve((2*x^3*y(x)^2-y(x))+(2*x^2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {12^{{1}/{3}} \left (-{\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+12^{{1}/{3}} x^{2} \left (x^{2}-c_{1} \right )\right )}{6 {\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= -\frac {2^{{2}/{3}} 3^{{1}/{3}} \left (\left (1+i \sqrt {3}\right ) {\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} x^{2} \left (x^{2}-c_{1} \right ) \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right )\right )}{12 {\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= \frac {2^{{2}/{3}} \left (\left (i \sqrt {3}-1\right ) {\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} x^{2} \left (3^{{1}/{3}}+i 3^{{5}/{6}}\right ) \left (x^{2}-c_{1} \right )\right ) 3^{{1}/{3}}}{12 {\left (\left (-9+\sqrt {12 x^{8}-36 c_{1} x^{6}+36 c_{1}^{2} x^{4}-12 c_{1}^{3} x^{2}+81}\right ) x^{2}\right )}^{{1}/{3}} x} \\ \end{align*}

Solution by Mathematica

Time used: 47.214 (sec). Leaf size: 358

DSolve[(2*x^3*y[x]^2-y[x])+(2*x^2*y[x]^3-x)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{2} \left (-x^3+c_1 x\right )}{\sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}+\frac {\sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{3 \sqrt [3]{2} x} \\ y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (x^3-c_1 x\right )}{2^{2/3} \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (x^3-c_1 x\right )}{2^{2/3} \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-27 x^2+\sqrt {729 x^4+108 x^3 \left (x^3-c_1 x\right ){}^3}}}{6 \sqrt [3]{2} x} \\ \end{align*}