61.28.21 problem 81

Internal problem ID [12502]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 81
Date solved : Wednesday, March 05, 2025 at 07:08:11 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 69
ode:=x*diff(diff(y(x),x),x)+(a*x^2+b*x+2)*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\frac {b^{2}}{2 a}} \pi c_{2} \left (a x +b \right ) \operatorname {erf}\left (\frac {\sqrt {2}\, \left (a x +b \right )}{2 \sqrt {a}}\right )+\sqrt {a}\, \sqrt {2}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {x \left (a x +2 b \right )}{2}} c_{2} +c_{1} \left (a x +b \right )}{x} \]
Mathematica. Time used: 0.352 (sec). Leaf size: 71
ode=x*D[y[x],{x,2}]+(a*x^2+b*x+2)*D[y[x],x]+b*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {(a x+b) \left (c_2 \int _1^x\exp \left (\int _1^{K[2]}-\frac {b^2+2 a K[1] b+a^2 K[1]^2+2 a}{b+a K[1]}dK[1]\right )dK[2]+c_1\right )}{b x} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b*y(x) + x*Derivative(y(x), (x, 2)) + (a*x**2 + b*x + 2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False