62.17.6 problem Ex 6
Internal
problem
ID
[12906]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
28.
Summary.
Page
59
Problem
number
:
Ex
6
Date
solved
:
Tuesday, January 28, 2025 at 04:41:02 AM
CAS
classification
:
[_rational]
\begin{align*} \left (-y+x y^{\prime }\right ) \left (x +y^{\prime } y\right )&=a^{2} y^{\prime } \end{align*}
✓ Solution by Maple
Time used: 0.400 (sec). Leaf size: 916
dsolve((diff(y(x),x)*x-y(x))*(diff(y(x),x)*y(x)+x)=a^2*diff(y(x),x),y(x), singsol=all)
\begin{align*}
y &= -i \left (a -x \right ) \\
y &= i \left (a -x \right ) \\
y &= -i \left (a +x \right ) \\
y &= i \left (a +x \right ) \\
y &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {-y^{2}-a^{2}+\textit {\_a}^{2}-\sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}}{\left (\left (-y^{2}-\textit {\_a}^{2}+a^{2}\right ) \sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}+\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )\right ) \textit {\_a}}d \textit {\_a} -2 \left (\int _{}^{y}\frac {4 \left (\frac {1}{4}+\left (\left (-\textit {\_f}^{2}+a^{2}-x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )\right ) \left (\int _{\textit {\_b}}^{x}-\frac {\left (\left (-\textit {\_a}^{2}-\textit {\_f}^{2}+a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+a^{4}+\textit {\_f}^{4}\right ) \textit {\_a}}{\sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}\, {\left (\left (-\textit {\_a}^{2}-\textit {\_f}^{2}+a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}\right )}^{2}}d \textit {\_a} \right )\right ) \textit {\_f}}{\left (-\textit {\_f}^{2}+a^{2}-x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}d \textit {\_f} \right )+c_{1} &= 0 \\
-\int _{\textit {\_b}}^{x}\frac {-y^{2}-a^{2}+\textit {\_a}^{2}+\sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}}{\textit {\_a} \left (\left (y^{2}+\textit {\_a}^{2}-a^{2}\right ) \sqrt {\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )}+\left (y^{2}+\left (a +\textit {\_a} \right )^{2}\right ) \left (y^{2}+\left (-\textit {\_a} +a \right )^{2}\right )\right )}d \textit {\_a} -2 \left (\int _{}^{y}\frac {4 \left (\frac {1}{4}+\left (\left (\textit {\_f}^{2}-a^{2}+x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )\right ) \left (\int _{\textit {\_b}}^{x}\frac {\left (\left (\textit {\_a}^{2}+\textit {\_f}^{2}-a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+a^{4}+\textit {\_f}^{4}\right ) \textit {\_a}}{\sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}\, {\left (\left (\textit {\_a}^{2}+\textit {\_f}^{2}-a^{2}\right ) \sqrt {\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}}+\textit {\_a}^{4}+\left (2 \textit {\_f}^{2}-2 a^{2}\right ) \textit {\_a}^{2}+\left (\textit {\_f}^{2}+a^{2}\right )^{2}\right )}^{2}}d \textit {\_a} \right )\right ) \textit {\_f}}{\left (\textit {\_f}^{2}-a^{2}+x^{2}\right ) \sqrt {\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}+\left (\textit {\_f}^{2}+\left (a -x \right )^{2}\right ) \left (\textit {\_f}^{2}+\left (a +x \right )^{2}\right )}d \textit {\_f} \right )+c_{1} &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 0.378 (sec). Leaf size: 75
DSolve[(D[y[x],x]*x-y[x])*(D[y[x],x]*y[x]+x)==a^2*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \sqrt {c_1 \left (x^2-\frac {a^2}{1+c_1}\right )} \\
y(x)\to -i (a-x) \\
y(x)\to i (a-x) \\
y(x)\to -i (a+x) \\
y(x)\to i (a+x) \\
\end{align*}