Internal
problem
ID
[12552]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-4
Problem
number
:
131
Date
solved
:
Thursday, March 13, 2025 at 11:43:31 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+lambda*x*diff(y(x),x)+(a*x^2+b*x+c)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+\[Lambda]*x*D[y[x],x]+(a*x^2+b*x+c)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") cg = symbols("cg") y = Function("y") ode = Eq(cg*x*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (a*x**2 + b*x + c)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None