Internal
problem
ID
[12568]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-4
Problem
number
:
147
Date
solved
:
Thursday, March 13, 2025 at 11:43:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*(2*a*x^n+b)*diff(y(x),x)+(a^2*x^(2*n)+a*(b+n-1)*x^n+alpha*x^(2*m)+beta*x^m+gamma)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*(2*a*x^n+b)*D[y[x],x]+(a^2*x^(2*n)+a*(b+n-1)*x^n+\[Alpha]*x^(2*m)+\[Beta]*x^m+\[Gamma])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(2*a*x**n + b)*Derivative(y(x), x) + (Alpha*x**(2*m) + BETA*x**m + Gamma + a**2*x**(2*n) + a*x**n*(b + n - 1))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None