Internal
problem
ID
[12584]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-5
Problem
number
:
163
Date
solved
:
Wednesday, March 05, 2025 at 07:16:21 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(x^2+a)*diff(diff(y(x),x),x)+2*b*x*diff(y(x),x)+2*(b-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+a)*D[y[x],{x,2}]+2*b*x*D[y[x],x]+2*(b-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(2*b*x*Derivative(y(x), x) + (a + x**2)*Derivative(y(x), (x, 2)) + (2*b - 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False