61.31.4 problem 185

Internal problem ID [12606]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Problem number : 185
Date solved : Thursday, March 13, 2025 at 11:53:02 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y&=0 \end{align*}

Maple. Time used: 0.271 (sec). Leaf size: 146
ode:=x^3*diff(diff(y(x),x),x)+(a*x^2+b*x)*diff(y(x),x)+c*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{-a} \left (-c_{2} x c \left (a b -c \right ) \left (-c +b \right ) \operatorname {KummerU}\left (\frac {\left (a +1\right ) b -c}{b}, a , \frac {b}{x}\right )+\left (x c_{1} b \left (a b -c \right ) \operatorname {KummerM}\left (\frac {\left (a +1\right ) b -c}{b}, a , \frac {b}{x}\right )-\left (b c_{1} \operatorname {KummerM}\left (\frac {a b -c}{b}, a , \frac {b}{x}\right )-c c_{2} \operatorname {KummerU}\left (\frac {a b -c}{b}, a , \frac {b}{x}\right )\right ) \left (a x b +b^{2}-2 c x \right )\right ) b \right )}{b^{2} c} \]
Mathematica. Time used: 0.278 (sec). Leaf size: 62
ode=x^3*D[y[x],{x,2}]+(a*x^2+b*x)*D[y[x],x]+c*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {Hypergeometric1F1}\left (-\frac {c}{b},2-a,\frac {b}{x}\right )-(-1)^a c_2 b^{a-1} \left (\frac {1}{x}\right )^{a-1} \operatorname {Hypergeometric1F1}\left (a-\frac {b+c}{b},a,\frac {b}{x}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(c*y(x) + x**3*Derivative(y(x), (x, 2)) + (a*x**2 + b*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-c*y(x) - x**3*Derivative(y(x), (x, 2)))/(x*(a*x + b)) cannot be solved by the factorable group method