Internal
problem
ID
[12608]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
187
Date
solved
:
Thursday, March 13, 2025 at 11:53:05 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(y(x),x),x)+(a*x^3+a*b*x-x^2+b)*diff(y(x),x)+a^2*b*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,2}]+(a*x^3-x^2+a*b*x+b)*D[y[x],x]+a^2*b*x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a**2*b*x*y(x) + x**3*Derivative(y(x), (x, 2)) + (a*b*x + a*x**3 + b - x**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-a**2*b*y(x) - x**2*Derivative(y(x), (x, 2)))/(a*b*x + a*x**3 + b - x**2) + Derivative(y(x), x) cannot be solved by the factorable group method