Internal
problem
ID
[12650]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
228
Date
solved
:
Wednesday, March 05, 2025 at 08:14:58 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^2+b)^2*diff(diff(y(x),x),x)+(2*a*x+c)*(a*x^2+b)*diff(y(x),x)+k*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b)^2*D[y[x],{x,2}]+(2*a*x+c)*(a*x^2+b)*D[y[x],x]+k*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") y = Function("y") ode = Eq(k*y(x) + (2*a*x + c)*(a*x**2 + b)*Derivative(y(x), x) + (a*x**2 + b)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False