Internal
problem
ID
[12675]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-8.
Other
equations.
Problem
number
:
254
Date
solved
:
Friday, March 14, 2025 at 12:16:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(a^2*x^(2*n)-1)*diff(diff(y(x),x),x)+x*(a*p*x^n+q)*diff(y(x),x)+(a*r*x^n+s)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(a^2*x^(2*n)-1)*D[y[x],{x,2}]+x*(a*p*x^n+q)*D[y[x],x]+(a*r*x^n+s)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") p = symbols("p") q = symbols("q") r = symbols("r") s = symbols("s") y = Function("y") ode = Eq(x**2*(a**2*x**(2*n) - 1)*Derivative(y(x), (x, 2)) + x*(a*p*x**n + q)*Derivative(y(x), x) + (a*r*x**n + s)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Symbol object cannot be interpreted as an integer