Internal
problem
ID
[12682]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-8.
Other
equations.
Problem
number
:
261
Date
solved
:
Wednesday, March 05, 2025 at 08:16:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^n+b*x^m+c)*diff(diff(y(x),x),x)+(lambda-x)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*D[y[x],{x,2}]+(\[Lambda]-x)*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") cg = symbols("cg") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq((cg - x)*Derivative(y(x), x) + (a*x**n + b*x**m + c)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Symbol object cannot be interpreted as an integer