Internal
problem
ID
[12696]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
11
Date
solved
:
Friday, March 14, 2025 at 12:16:51 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-diff(y(x),x)+(a*exp(3*lambda*x)+b*exp(2*lambda*x)+1/4-1/4*lambda^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-D[y[x],x]+(a*Exp[3*\[Lambda]*x]+b*Exp[2*\[Lambda]*x]+1/4-1/4*\[Lambda]^2 )*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") cg = symbols("cg") y = Function("y") ode = Eq((a*exp(3*cg*x) + b*exp(2*cg*x) - cg**2/4 + 1/4)*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False