61.34.13 problem 13

Internal problem ID [12698]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 13
Date solved : Wednesday, March 05, 2025 at 08:17:23 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+2*a*exp(lambda*x)*diff(y(x),x)+a*exp(lambda*x)*(exp(lambda*x)*a+lambda)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {a \,{\mathrm e}^{\lambda x}}{\lambda }} \left (c_{2} x +c_{1} \right ) \]
Mathematica. Time used: 0.066 (sec). Leaf size: 26
ode=D[y[x],{x,2}]+2*a*Exp[\[Lambda]*x]*D[y[x],x]+a*Exp[\[Lambda]*x]*(a*Exp[\[Lambda]*x]+\[Lambda])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (c_2 x+c_1) e^{-\frac {a e^{\lambda x}}{\lambda }} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
cg = symbols("cg") 
y = Function("y") 
ode = Eq(a*(a*exp(cg*x) + cg)*y(x)*exp(cg*x) + 2*a*exp(cg*x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False