Internal
problem
ID
[12700]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
15
Date
solved
:
Friday, March 14, 2025 at 12:16:55 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+a*exp(lambda*x)*diff(y(x),x)-b*exp(x*mu)*(exp(lambda*x)*a+b*exp(x*mu)+mu)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+a*Exp[\[Lambda]*x]*D[y[x],x]-b*Exp[\[Mu]*x]*(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x]+\[Mu])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") cg = symbols("cg") mu = symbols("mu") y = Function("y") ode = Eq(a*exp(cg*x)*Derivative(y(x), x) - b*(a*exp(cg*x) + b*exp(mu*x) + mu)*y(x)*exp(mu*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False