Internal
problem
ID
[12711]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
26
Date
solved
:
Friday, March 14, 2025 at 12:17:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(a*exp(x)+b)*diff(y(x),x)+(c*(-c+a)*exp(2*x)+(a*k+b*c-2*c*k+c)*exp(x)+k*(b-k))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*Exp[x]+b)*D[y[x],x]+( c*(a-c)*Exp[2*x]+ (a*k+b*c+c-2*c*k)*Exp[x] + k*(b-k) )*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") y = Function("y") ode = Eq((a*exp(x) + b)*Derivative(y(x), x) + (c*(a - c)*exp(2*x) + k*(b - k) + (a*k + b*c - 2*c*k + c)*exp(x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False