61.34.32 problem 32

Internal problem ID [12717]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 32
Date solved : Wednesday, March 05, 2025 at 08:18:27 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 70
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a+b*exp(x*mu)+c)*diff(y(x),x)+(a*lambda*exp(lambda*x)+b*mu*exp(x*mu))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_{1} \left (\int {\mathrm e}^{\frac {c x \mu \lambda +b \,{\mathrm e}^{\mu x} \lambda +{\mathrm e}^{\lambda x} a \mu }{\mu \lambda }}d x \right )+c_{2} \right ) {\mathrm e}^{\frac {-{\mathrm e}^{\lambda x} a \mu -\lambda \left (c x \mu +b \,{\mathrm e}^{\mu x}\right )}{\mu \lambda }} \]
Mathematica. Time used: 35.592 (sec). Leaf size: 113
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x]+c)*D[y[x],x]+(a*\[Lambda]*Exp[\[Lambda]*x]+b*\[Mu]*Exp[\[Mu]*x])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to e^{-\frac {a e^{\lambda x}}{\lambda }-\frac {b e^{\mu x}}{\mu }-c x} \left (\int _1^xe^{\frac {e^{\lambda K[1]} a}{\lambda }+c K[1]+\frac {b e^{\mu K[1]}}{\mu }} c_1dK[1]+c_2\right ) \\ y(x)\to c_2 e^{-\frac {a e^{\lambda x}}{\lambda }-\frac {b e^{\mu x}}{\mu }-c x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
cg = symbols("cg") 
mu = symbols("mu") 
y = Function("y") 
ode = Eq((a*cg*exp(cg*x) + b*mu*exp(mu*x))*y(x) + (a*exp(cg*x) + b*exp(mu*x) + c)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False