63.7.1 problem 1(a)

Internal problem ID [13120]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Exercises page 94
Problem number : 1(a)
Date solved : Tuesday, January 28, 2025 at 04:53:23 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+x^{\prime }+4 x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1\\ x^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.046 (sec). Leaf size: 31

dsolve([diff(x(t),t$2)+diff(x(t),t)+4*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)
 
\[ x \left (t \right ) = \frac {{\mathrm e}^{-\frac {t}{2}} \left (\sqrt {15}\, \sin \left (\frac {\sqrt {15}\, t}{2}\right )+15 \cos \left (\frac {\sqrt {15}\, t}{2}\right )\right )}{15} \]

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 47

DSolve[{D[x[t],{t,2}]+D[x[t],t]+4*x[t]==0,{x[0]==1,Derivative[1][x][0 ]==0}},x[t],t,IncludeSingularSolutions -> True]
 
\[ x(t)\to \frac {1}{15} e^{-t/2} \left (\sqrt {15} \sin \left (\frac {\sqrt {15} t}{2}\right )+15 \cos \left (\frac {\sqrt {15} t}{2}\right )\right ) \]