62.6.5 problem Ex 5

Internal problem ID [12744]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 13. Linear equations of first order. Page 19
Problem number : Ex 5
Date solved : Wednesday, March 05, 2025 at 08:23:42 PM
CAS classification : [_linear]

\begin{align*} x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=x^2*diff(y(x),x)+(-2*x+1)*y(x) = x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} \left (1+{\mathrm e}^{\frac {1}{x}} c_{1} \right ) \]
Mathematica. Time used: 0.046 (sec). Leaf size: 21
ode=x^2*D[y[x],x]+(1-2*x)*y[x]==x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2 \left (1+c_1 e^{\frac {1}{x}-2}\right ) \]
Sympy. Time used: 0.274 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x**2 + (1 - 2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (C_{1} e^{\frac {1}{x}} + 1\right ) \]