63.9.9 problem 1(i)

Internal problem ID [13136]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110
Problem number : 1(i)
Date solved : Tuesday, January 28, 2025 at 05:01:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=4 t +5 \,{\mathrm e}^{-t} \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 41

dsolve(diff(x(t),t$2)+diff(x(t),t)+x(t)=4*t+5*exp(-t),x(t), singsol=all)
 
\[ x \left (t \right ) = {\mathrm e}^{-\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_{2} +{\mathrm e}^{-\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_{1} +4 t -4+5 \,{\mathrm e}^{-t} \]

Solution by Mathematica

Time used: 1.523 (sec). Leaf size: 154

DSolve[D[x[t],{t,2}]+D[x[t],t]+x[t]==4*t+5*Exp[-t],x[t],t,IncludeSingularSolutions -> True]
 
\[ x(t)\to e^{-t/2} \left (\cos \left (\frac {\sqrt {3} t}{2}\right ) \int _1^t-\frac {2 e^{-\frac {K[2]}{2}} \left (4 e^{K[2]} K[2]+5\right ) \sin \left (\frac {1}{2} \sqrt {3} K[2]\right )}{\sqrt {3}}dK[2]+\sin \left (\frac {\sqrt {3} t}{2}\right ) \int _1^t\frac {2 e^{-\frac {K[1]}{2}} \cos \left (\frac {1}{2} \sqrt {3} K[1]\right ) \left (4 e^{K[1]} K[1]+5\right )}{\sqrt {3}}dK[1]+c_2 \cos \left (\frac {\sqrt {3} t}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \]