62.12.7 problem Ex 7

Internal problem ID [12774]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number : Ex 7
Date solved : Wednesday, March 05, 2025 at 08:28:28 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (y-x \right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.034 (sec). Leaf size: 17
ode:=(y(x)-x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{\operatorname {LambertW}\left (-x \,{\mathrm e}^{-c_{1}}\right )} \]
Mathematica. Time used: 2.702 (sec). Leaf size: 27
ode=(y[x]-x)*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x}{W\left (-e^{-1-c_1} x\right )} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.583 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x + y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} + W\left (- x e^{- C_{1}}\right )} \]