62.12.18 problem Ex 19

Internal problem ID [12785]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number : Ex 19
Date solved : Wednesday, March 05, 2025 at 08:30:40 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} x y^{2}+y-x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=x*y(x)^2+y(x)-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 x}{x^{2}-2 c_{1}} \]
Mathematica. Time used: 0.147 (sec). Leaf size: 23
ode=(x*y[x]^2+y[x])-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 x}{x^2-2 c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.194 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2 - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 x}{C_{1} - x^{2}} \]