Internal
problem
ID
[12790]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
19.
Summary.
Page
29
Problem
number
:
Ex
24
Date
solved
:
Wednesday, March 05, 2025 at 08:30:54 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=y(x)^3-2*x^2*y(x)+(2*x*y(x)^2-x^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^3-2*x^2*y[x])+(2*x*y[x]^2-x^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2*y(x) + (-x**3 + 2*x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)