62.12.23 problem Ex 24

Internal problem ID [12790]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 19. Summary. Page 29
Problem number : Ex 24
Date solved : Wednesday, March 05, 2025 at 08:30:54 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.629 (sec). Leaf size: 71
ode:=y(x)^3-2*x^2*y(x)+(2*x*y(x)^2-x^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\frac {2 c_{1} x^{3}-2 \sqrt {c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}}\, x}{2} \\ y &= \frac {\sqrt {2}\, \sqrt {\frac {c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+4}}{c_{1} x^{3}}}\, x}{2} \\ \end{align*}
Mathematica. Time used: 0.142 (sec). Leaf size: 48
ode=(y[x]^3-2*x^2*y[x])+(2*x*y[x]^2-x^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {2 K[1]^2-1}{(K[1]-1) K[1] (K[1]+1)}dK[1]=-3 \log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 5.403 (sec). Leaf size: 105
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2*y(x) + (-x**3 + 2*x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}\right ] \]