Internal
problem
ID
[12796]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
19.
Summary.
Page
29
Problem
number
:
Ex
30
Date
solved
:
Wednesday, March 05, 2025 at 08:32:03 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=(2*(x*y(x))^(1/2)-x)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*Sqrt[x*y[x]]-x)*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x + 2*sqrt(x*y(x)))*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)