62.13.5 problem Ex 5

Internal problem ID [12801]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IV, differential equations of the first order and higher degree than the first. Article 24. Equations solvable for \(p\). Page 49
Problem number : Ex 5
Date solved : Wednesday, March 05, 2025 at 08:32:33 PM
CAS classification : [_quadrature]

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}&=1 \end{align*}

Maple. Time used: 0.076 (sec). Leaf size: 17
ode:=(x^2+1)*diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \operatorname {arcsinh}\left (x \right )+c_{1} \\ y &= -\operatorname {arcsinh}\left (x \right )+c_{1} \\ \end{align*}
Mathematica. Time used: 0.006 (sec). Leaf size: 21
ode=(1+x^2)*(D[y[x],x])^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\text {arcsinh}(x)+c_1 \\ y(x)\to \text {arcsinh}(x)+c_1 \\ \end{align*}
Sympy. Time used: 0.975 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \log {\left (x + \sqrt {x^{2} + 1} \right )}, \ y{\left (x \right )} = C_{1} + \log {\left (x + \sqrt {x^{2} + 1} \right )}\right ] \]