63.15.5 problem 6(e)

Internal problem ID [13188]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156
Problem number : 6(e)
Date solved : Tuesday, January 28, 2025 at 05:12:07 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{\prime \prime }-2 x^{\prime }+2 x&={\mathrm e}^{-t} \end{align*}

Using Laplace method With initial conditions

\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=1 \end{align*}

Solution by Maple

Time used: 9.253 (sec). Leaf size: 24

dsolve([diff(x(t),t$2)-2*diff(x(t),t)+2*x(t)=exp(-t),x(0) = 0, D(x)(0) = 1],x(t), singsol=all)
 
\[ x \left (t \right ) = \frac {{\mathrm e}^{-t}}{5}+\frac {\left (-\cos \left (t \right )+7 \sin \left (t \right )\right ) {\mathrm e}^{t}}{5} \]

Solution by Mathematica

Time used: 0.069 (sec). Leaf size: 96

DSolve[{D[x[t],{t,2}]-2*D[x[t],t]+2*x[t]==Exp[-t],{x[0]==0,Derivative[1][x][0 ]==1}},x[t],t,IncludeSingularSolutions -> True]
 
\[ x(t)\to e^t \left (\sin (t) \left (-\int _1^0e^{-2 K[1]} \cos (K[1])dK[1]\right )+\sin (t) \int _1^te^{-2 K[1]} \cos (K[1])dK[1]-\cos (t) \int _1^0-e^{-2 K[2]} \sin (K[2])dK[2]+\cos (t) \int _1^t-e^{-2 K[2]} \sin (K[2])dK[2]+\sin (t)\right ) \]