Internal
problem
ID
[12815]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
3
Date
solved
:
Wednesday, March 05, 2025 at 08:34:22 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=4*exp(2*y(x))*diff(y(x),x)^2+2*exp(2*x)*diff(y(x),x)-exp(2*x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*Exp[2*y[x]]*(D[y[x],x])^2+2*Exp[2*x]*D[y[x],x]-Exp[2*x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*exp(2*x)*Derivative(y(x), x) - exp(2*x) + 4*exp(2*y(x))*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out