63.19.7 problem 3(a)

Internal problem ID [13221]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 4, Linear Systems. Exercises page 202
Problem number : 3(a)
Date solved : Tuesday, January 28, 2025 at 05:12:37 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=2 x+3 y \left (t \right )\\ y^{\prime }\left (t \right )&=-x-14 \end{align*}

Solution by Maple

Time used: 0.065 (sec). Leaf size: 76

dsolve([diff(x(t),t)=2*x(t)+3*y(t),diff(y(t),t)=-x(t)-14],singsol=all)
 
\begin{align*} x \left (t \right ) &= -14+{\mathrm e}^{t} \left (\sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) c_{1} -\sqrt {2}\, \cos \left (\sqrt {2}\, t \right ) c_{2} -\sin \left (\sqrt {2}\, t \right ) c_{2} -\cos \left (\sqrt {2}\, t \right ) c_{1} \right ) \\ y &= \frac {28}{3}+{\mathrm e}^{t} \left (\sin \left (\sqrt {2}\, t \right ) c_{2} +\cos \left (\sqrt {2}\, t \right ) c_{1} \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.167 (sec). Leaf size: 336

DSolve[{D[x[t],t]==2*x[t]+3*y[t],D[y[t],t]==-x[t]-14},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{2} e^t \left (\left (\sqrt {2} \sin \left (\sqrt {2} t\right )+2 \cos \left (\sqrt {2} t\right )\right ) \int _1^t21 \sqrt {2} e^{-K[1]} \sin \left (\sqrt {2} K[1]\right )dK[1]+3 \sqrt {2} \sin \left (\sqrt {2} t\right ) \int _1^t-7 e^{-K[2]} \left (2 \cos \left (\sqrt {2} K[2]\right )+\sqrt {2} \sin \left (\sqrt {2} K[2]\right )\right )dK[2]+2 c_1 \cos \left (\sqrt {2} t\right )+\sqrt {2} c_1 \sin \left (\sqrt {2} t\right )+3 \sqrt {2} c_2 \sin \left (\sqrt {2} t\right )\right ) \\ y(t)\to -\frac {1}{2} e^t \left (\sqrt {2} \sin \left (\sqrt {2} t\right ) \int _1^t21 \sqrt {2} e^{-K[1]} \sin \left (\sqrt {2} K[1]\right )dK[1]+\left (\sqrt {2} \sin \left (\sqrt {2} t\right )-2 \cos \left (\sqrt {2} t\right )\right ) \int _1^t-7 e^{-K[2]} \left (2 \cos \left (\sqrt {2} K[2]\right )+\sqrt {2} \sin \left (\sqrt {2} K[2]\right )\right )dK[2]-2 c_2 \cos \left (\sqrt {2} t\right )+\sqrt {2} c_1 \sin \left (\sqrt {2} t\right )+\sqrt {2} c_2 \sin \left (\sqrt {2} t\right )\right ) \\ \end{align*}