62.23.1 problem Ex 2

Internal problem ID [12848]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95
Problem number : Ex 2
Date solved : Wednesday, March 05, 2025 at 08:48:20 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 x +c_{2} \right ) \cos \left (x \right )+\sin \left (x \right ) \left (x c_3 +c_{1} \right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 26
ode=D[y[x],{x,4}]+2*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (c_2 x+c_1) \cos (x)+(c_4 x+c_3) \sin (x) \]
Sympy. Time used: 0.086 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) \sin {\left (x \right )} + \left (C_{3} + C_{4} x\right ) \cos {\left (x \right )} \]