63.22.5 problem 4(e)

Internal problem ID [13235]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 4, Linear Systems. Exercises page 237
Problem number : 4(e)
Date solved : Tuesday, January 28, 2025 at 05:12:49 AM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=2 x\\ y^{\prime }\left (t \right )&=2 y \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.026 (sec). Leaf size: 19

dsolve([diff(x(t),t)=2*x(t)+0*y(t),diff(y(t),t)=0*x(t)+2*y(t)],singsol=all)
 
\begin{align*} x \left (t \right ) &= c_{2} {\mathrm e}^{2 t} \\ y &= c_{1} {\mathrm e}^{2 t} \\ \end{align*}

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 65

DSolve[{D[x[t],t]==2*x[t]+0*y[t],D[y[t],t]==0*x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to c_1 e^{2 t} \\ y(t)\to c_2 e^{2 t} \\ x(t)\to c_1 e^{2 t} \\ y(t)\to 0 \\ x(t)\to 0 \\ y(t)\to c_2 e^{2 t} \\ x(t)\to 0 \\ y(t)\to 0 \\ \end{align*}