62.29.12 problem Ex 14

Internal problem ID [12884]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 52. Summary. Page 117
Problem number : Ex 14
Date solved : Wednesday, March 05, 2025 at 08:49:44 PM
CAS classification : [[_3rd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y&=\frac {1}{x} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 28
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 1/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {4 c_{2} x^{2} \ln \left (x \right )+4 x^{2} c_3 +\ln \left (x \right )+c_{1} +1}{4 x} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 33
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==1/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\log (x)+1}{4 x}+\frac {c_1}{x}+c_2 x+c_3 x \log (x) \]
Sympy. Time used: 0.365 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x) - 1/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x + C_{3} x \log {\left (x \right )} + \frac {\log {\left (x \right )}}{4 x} \]