Internal
problem
ID
[12908]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VIII,
Linear
differential
equations
of
the
second
order.
Article
55.
Summary.
Page
129
Problem
number
:
Ex
10
Date
solved
:
Friday, March 14, 2025 at 12:17:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(y(x),x),x)+2*x^3*(1+x)*diff(y(x),x)+n^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,2}]+2*x^3*(1+x)*D[y[x],x]+n^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(n**2*y(x) + x**4*Derivative(y(x), (x, 2)) + 2*x**3*(x + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-n**2*y(x) - x**4*Derivative(y(x), (x, 2)))/(2*x**3*(x + 1)) cannot be solved by the factorable group method