62.33.5 problem Ex 5

Internal problem ID [12913]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 57. Dependent variable absent. Page 132
Problem number : Ex 5
Date solved : Wednesday, March 05, 2025 at 08:51:23 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} \left (y^{\prime }-x y^{\prime \prime }\right )^{2}&=1+{y^{\prime \prime }}^{2} \end{align*}

Maple. Time used: 0.198 (sec). Leaf size: 63
ode:=(diff(y(x),x)-x*diff(diff(y(x),x),x))^2 = 1+diff(diff(y(x),x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-x^{2}+1}\, x}{2}+\frac {\arcsin \left (x \right )}{2}+c_{1} \\ y &= -\frac {\sqrt {-x^{2}+1}\, x}{2}-\frac {\arcsin \left (x \right )}{2}+c_{1} \\ y &= \frac {\sqrt {c_{1}^{2}-1}\, x^{2}}{2}+c_{1} x +c_{2} \\ \end{align*}
Mathematica. Time used: 0.148 (sec). Leaf size: 58
ode=(D[y[x],x]-x*D[y[x],{x,2}])^2==1+(D[y[x],{x,2}])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1 x^2}{2}-\sqrt {1+c_1{}^2} x+c_2 \\ y(x)\to \frac {c_1 x^2}{2}+\sqrt {1+c_1{}^2} x+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*Derivative(y(x), (x, 2)) + Derivative(y(x), x))**2 - Derivative(y(x), (x, 2))**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out